
On Locally Minimal Nullstellensatz Proofs

Leonardo de Moura and Grant Olney Passmore

{leonardo@microsoft.com, g.passmore@ed.ac.uk}

Microsoft Research and LFCS, University of Edinburgh

Abstract

Hilbert’s weak Nullstellensatz guarantees the existence of algebraic proof ob-
jects certifying the unsatisfiability of systems of polynomial equations not satisfi-
able over any algebraically closed field. Such proof objects take the form of ideal
membership identities and can be found algorithmically using Gröbner bases
and cofactor-based linear algebra techniques. However, these proof objects may
contain redundant information: a proper subset of the equational assumptions
used in these proofs may be sufficient to derive the unsatisfiability of the original
polynomial system. For using Nullstellensatz techniques in SMT-based decision
methods, a minimal proof object is often desired. With this in mind, we intro-
duce a notion of locally minimal Nullstellensatz proofs and give ideal-theoretic
algorithms for their construction.

1 Introduction

Modern Satisfiability Modulo Theories (SMT) solvers have application in the verifi-
cation of software and hardware artifacts and are seeing increasing use in areas as
diverse as planning and formalised mathematics. At a high-level, an SMT solver con-
sists of an orchestrated combination of a DPLL based SAT solver and a number of
satellite “theory” solvers (T -solvers) which implement decision methods for decidable
elementary theories such as linear integer and real arithmetic, bit-vector arithmetic,
and the theory of uninterpreted functions with equality. The effectiveness of an SMT
decision loop depends crucially upon the ability of its T -solvers to identify “small”
inconsistent components of formulas [2, 3]. Thus when one develops a new T -solver,
the investigation of techniques for finding such “small” inconsistent subformulas is
an important concern.

Many verification problems, such as those arising from hybrid systems, embedded
and physical systems, and numerical algorithms, require deciding the satisfiability of
non-linear arithmetical formulas over the real numbers. By Tarski [8], it is well known
that the full elementary theory of polynomial real arithmetic is decidable, but classical
(quantifier elimination) approaches to this problem are prohibitively expensive for
formulas found in real applications. Recently, a number of new (semi-) decision

1



procedures for the quantifier-free fragment of this theory have been proposed [9, 6, 5].
All of them use a Gröbner bases procedure as a subroutine.

The work described in this paper can be seen as a contribution to the development
of effective T -solvers for non-linear polynomial arithmetic over both the real and
complex numbers. In particular, we consider the problem of finding “small” proof
objects certifying the unsatisfiability of systems of polynomial equations over any
algebraically closed field. We consider this problem within the context of Gröbner
basis calculations.

We start by defining algebraic notions of proof minimality and redundancy, and
two proof minimization transformations: cofactor-subsumption and basis-subsumption.
Then, we describe a simple algorithm for extracting proof objects from a Gröbner
bases procedure. Our algorithm is optimal for the linear case, that is, it produces
only non-redundant proof objects. Finally, we show that a restricted form of cofac-
tor subsumption can be efficiently implemented and used to reduce the amount of
redundancy in our proof objects.

2 Background

Given {p1, . . . , pk}, a finite subset of Q[~x], the polynomial ideal I({p1, . . . , pk}) is
the set of polynomials {

∑k
i=1 piqi | qi ∈ Q[~x]}. Hilbert’s Weak Nullstellensatz states

that any set of polynomial equations {p1 ≃ 0, . . . , pk ≃ 0} is unsatisfiable over Cn

iff I(p1, . . . , pk) = Q[~x]. Therefore, if ϕ =
∧k

i=1 pi ≃ 0, then 〈C,+,−, ∗, 0, 1〉 |=

¬∃~x(ϕ(~x)) iff ∃q1, . . . , qk ∈ Q[~x] s.t.
∑k

i=1 piqi = 1. An element xi1
1 . . . xin

n in
Q[x1, . . . , xn] is called a power-product (or term), and an element cxi1

1 . . . xin
n with

c ∈ Q and xi1
1 . . . xin

n a power-product is called a monomial. We say a monomial is
monic if c = 1. (This terminology is not universally agreed upon.) We use M to de-
note the set of all power-products in Q[x1, . . . , xn]. From hereafter, we use p, q and r
to denote polynomials, m to denote power-products and monic monomials, c to denote
coefficients, and cm to denote monomials. We say a power-product xi1

1 . . . xin
n contains

xk if ik > 0. Given two power-products m1 = xi1
1 . . . xin

n and m2 = xj1
1 . . . xjn

n , m1m2

denotes the power-product xi1+j1
1 . . . xin+jn

n , if ik ≥ jk for k ∈ {1, . . . , n}, then m1

m2
de-

notes the power-product xi1−j1
1 . . . xin−jn

n , and the least common multiple lcm(m1,m2)

of m1 and m2 is the power product x
max(i1,j1)
1 . . . x

max(in,jn)
n . We say a polynomial

p contains the power-product m if p contains the monomial cm for some coefficient
c 6= 0. Given a polynomial p = c1m1 + . . . + cnmn and a monomial cm, we use cmp
to denote the polynomial (c1c)m1m + . . . + (cnc)mnm. Similarly, given a polyno-
mal p = c1m1 + . . . + cnmn and a polynomal q, we use pq to denote the polynomal
c1m1q + . . . + cnmnq. In the work that follows, all polynomials are assumed to be in
a sum-of-monomials normal form (e.g., a polynomial will never contain two distinct
monomials formed from the same power-product).

Given two monic monomials p1 and p2 of the form m1 + q1 and m2 + q2, let
τ1,2 be the lcm(m1,m2), then we use spol(p1, p2) to denote the polynomial (

τ1,2

m1
)q1 −

2



(
τ1,2

m2
)q2. Given a set of polynomials S, it is easy to see that if {p1, p2} ⊆ I(S), then

spol(p1, p2) ∈ I(S).
An order relation ≺ on the set M is admissible if m1 ≺ m2 implies that m1m ≺

m2m, for all m1, m2 and m in M. A monomial order is a total order on M which is
admissible and a well ordering. Given two polynomials p1 and p2, we say p1 ≺ p2 if
there is a monomial cm in p2 such that for all monomials cimi in p1, mi ≺ m.

The lexicographical order ≺lex is defined as xi1
1 . . . xin

n ≺lex xj1
1 . . . xjn

n if i1 =
j1, . . . , ik = jk, ik+1 < jk+1 for some k. The degree reverse lexicographical order
≺dlex is defined as m1 = xi1

1 . . . xin
n ≺dlex xj1

1 . . . xjn
n = m2 if deg(m1) < deg(m2) or

if deg(m1) = deg(m2) and in = jn, . . . , ik = jk, ik−1 > jk−1 for some k. The relations
≺lex and ≺dlex are monomial orders.

2.1 Buchberger’s Algorithm and Strategy

Let us examine Buchberger’s algorithm (Fig. 1) and reflect upon the basis construc-
tion strategy underlying it. But what is a strategy? Perhaps the best way to approach
this question is to examine what might be changed in the algorithm while still preserv-
ing its correctness. Two absolutely crucial ideas underlying the algorithm which seem
to be a requirement of all Gröbner basis procedures are (i) the use of polynomials as
rewrite rules, and (ii) the iterative recovery of confluence (that is, completion) of the
rewrite system induced by the polynomials through the computation of critical pairs
(S-polynomials).

If, for the sake of motivation, we assume that these are the only two requirements
of a Gröbner basis procedure, then it is easy to see much that might be changed. For
instance, one might allow members of G to simplify other members of G. Or one
might simplify multiple S-polynomials simultaneously, as done in F4. Or one might
allow specially selected members of G\{pi, pj} to simplify the individual components
of pairs 〈pi, pj〉 ∈ S just before considering spol(pi, pj). Or one might use spol(pi, pj)
to simplify members of G before using members of G to compute a normal form
for spol(pi, pj). When one attempts to construct Gröbner basis procedures using
different strategies such as these, it can become difficult to (i) prove the correctness
of the resulting procedure, and (ii) prove that desirable optimizations developed in
the context of well-studied procedures, such as a reduction to zero criteria known to
be admissible in Buchberger’s algorithm, are in fact admissible under the strategy
being used in the new procedure. This is especially true of reduction to zero criteria
that have temporal requirements (e.g., by requiring that certain S-polynomials were
“processed” before others). We introduce abstract Gröbner bases to address precisely
these problems.

2.2 Abstract Gröbner Basis

Given a monomial order ≺, the key idea in Buchberger’s algorithm is to use a poly-
nomial cm + q, where q ≺ m, as a rewrite rule cm → −q. For clarity, we will write

3



Input: 〈F = {p1, . . . , pk} ⊂ Q[~x],≺〉
Output: G s.t. G is a GBasis of F w.r.t. ≺
G := F; S := {〈pi, pj〉 | 1 ≤ i < j ≤ k}
while S 6= ∅ do

Let 〈pi, pj〉 ∈ S

For some q s.t. S-polynomial(pi, pj)
G
−→ q

if q 6= 0 then

S := S ∪ {〈p, q〉 | p ∈ G}
G := G ∪ {q}

end if

S := S \ {〈pi, pj〉}
end while

Figure 1: Buchberger’s Algorithm

polynomials used as rewrite rules in a form in which the head monomial has been
underlined. For instance, when using cm+q as a rewrite rule we will mean cm → −q.
We say a polynomial used as a rewrite rule cm + q is monic if c = 1. To simplify
the presentation that follows, we will assume all polynomials used as rewrite rules
are monic. The monic polynomial p = m + q induces a reduction relation 7→p on
polynomials. It is defined as q1 + c1m1m 7→p q1 − c1m1q for arbitrary polynomials
q1 and monomials c1m1. Given a set of monic polynomials G = {p1, . . . , pk}, the
reduction relation induced by G is defined as: 7→G=

⋃k
i=1 7→pi

.

Definition 1 (Gröbner bases). A finite set of monic polynomials G is a Gröbner
basis of the ideal I(F ) iff I(G) = I(F ) and 7→G is confluent.

The inference rules in Figure 2 work on pairs of sets of polynomials (S,G). In
all rules, the coefficients c and c1 are assumed to be non-zero. We use (S1, G1) ⊢
(S2, G2) to indicate that (S1, G1) can be transformed to (S2, G2) by applying one of
the inference rules in Figure 2. The proofs of all theorems in this section are included
in [4].

Example 1. Let F be the set of polynomials:

{x2y − 1, xy2 − y}.

Then, using the inference rules in Figure 2, we can generate the run in Figure 3. A
reduced Gröbner basis for F is contained in the final state (∅, {y − 1, x − 1}).

Theorem 1. (S1, G1) ⊢ (S2, G2) implies I(S1 ∪ G1)) = I(S2 ∪ G2)).

Definition 2 (Procedure). A Gröbner basis procedure G is a program that accepts a
set of polynomials {p1, . . . , pk}, a monomial order ≺, and uses the rules in Figure 2

4



Orient
S ∪ {cm + q}, G

S,G ∪ {m + (1
c
)q}

Superpose
S,G ∪ {p1, p2}

S ∪ {spol(p1, p2)}, G ∪ {p1, p2}

Delete
S ∪ {0}, G

S,G

Simplify-S
S ∪ {c1m1m2 + q1}, G ∪ {m2 + q2}

S ∪ {q1 − c1m1q2}, G ∪ {m2 + q2}

Simplify-H
S,G ∪ {m1m2 + q1, m2 + q2}

S ∪ {q1 − m1q2}, G ∪ {m2 + q2}
if m1 6= 1

Simplify-T
S,G ∪ {m + c1m1m2 + q1, m2 + q2}

S,G ∪ {m − c1m1q2 + q1, m2 + q2}

Figure 2: Inference rules.

to generate a (finite or infinite) sequence (S1 = {p1, . . . , pk}, G1 = ∅) ⊢ (S2, G2) ⊢
(S3, G3) ⊢ . . . . This sequence is called a run of G.

Given a set of monic polynomials G, the set of S-polynomials SP(G) is defined as
the set {spol(p1, p2) | p1, p2 ∈ G}.

Definition 3 (Correct Procedure). A Gröbner basis procedure G is said to be correct
iff it produces only finite runs (S1, G1 = ∅) ⊢ . . . ⊢ (Sn = ∅, Gn), and SP(Gn) ⊆
(S1 ∪ S2 ∪ . . . ∪ Sn−1).

Theorem 2. Let G be a correct Gröbner basis procedure, then for any run (S1, G1 =
∅) ⊢ . . . ⊢ (Sn = ∅, Gn), Gn is a Gröbner basis for I(S1).

Definition 4 (Eager Simplification). Given a Gröbner basis procedure G, we say G

implements eager simplification iff G only applies Orient to p ∈ Si when Simplify-S

cannot be applied to p.

Proposition 3. Given a Gröbner basis procedure G using eager simplification, then
for any run (S1, G1) ⊢ (S2, G2) ⊢ . . ., for all j ≥ 1, there is no m1 + q1 and m2 + q2

in Gj such that m1 = m2 and q1 6= q2. Moreover, in this case, the condition m1 6= 1
in the rule Simplify-H is only restricting self simplifications.

5



{x2y − 1, xy2 − y}, ∅
⊢ Orient: x2y − 1

{xy2 − y}, {x2y − 1}
⊢ Orient: xy2 − y

∅, {x2y − 1, xy2 − y}
⊢ Superpose: spol(x2y − 1, xy2 − y) = xy − y

{xy − y}, {x2y − 1, xy2 − y}
⊢ Orient: xy − y

∅, {x2y − 1, xy2 − y, xy − y}
⊢ Simplify-H: xy − y over x2y − 1

{xy − 1}, {xy2 − y, xy − y}
⊢ Simplify-S: xy − y over xy − 1

{y − 1}, {xy2 − y, xy − y}
⊢ Orient: y − 1

∅, {xy2 − y, xy − y, y − 1}
⊢ Simplify-H: y − 1 over xy2 − y

{xy − y}, {xy − y, y − 1}
⊢ Simplify-S: xy − y over xy − y

{0}, {xy − y, y − 1}
⊢ Delete

∅, {xy − y, y − 1}
⊢ Simplify-H: y − 1 over xy − y

{x − y}, {y − 1}
⊢ Simplify-S: y − 1 over x − y

{x − 1}, {y − 1}
⊢ Orient: x − 1

∅, {y − 1, x − 1}
⊢ Superpose: spol(y − 1, x − 1) = x − y

{x − y}, {y − 1, x − 1}
⊢ Simplify-S: y − 1 over x − y

{x − 1}, {y − 1, x − 1}
⊢ Simplify-S: x − 1 over x − 1

{0}, {y − 1, x − 1}
⊢ Delete:

∅, {y − 1, x − 1}

Figure 3: A run for {x2y − 1, xy2 − y} w.r.t. ≺dlex with x ≺ y.

6



Input: 〈S = {p1, . . . , pk} ⊂ Q[~x],≺〉
Output: G s.t. G is a GBasis of S w.r.t. ≺
Apply Orient to every member of S
Apply Superpose between every pi, pj ∈ G (pi 6= pj)
while S 6= ∅ do

Choose spol(pi, pj) ∈ S
Apply Simplify-S to spol(pi, pj) ∈ S as long as possible
Call the resulting simplified polynomial (in S) q
if q 6= 0 then

Apply Orient to q
Apply Superpose to all pairs 〈p, q〉 (p 6= q ∈ G)

for which Superpose has not been previously
applied

else

Apply Delete to q
end if

end while

Figure 4: Rule-based Simulation of Buchberger’s Algorithm

Definition 5 (Fairness). A Gröbner basis procedure G is said to be fair iff for any
run (S1, G1) ⊢ (S2, G2) ⊢ . . .

SP(
⋃

i≥1

⋂

j≥i

Gj) ⊆
⋃

i≥1

Si.

Theorem 4. If a Gröbner basis procedure G implements eager simplification, is fair,
and Superpose is applied at most once for any pair of polynomials in

⋃

i≥1 Gi, then
G is correct.

As an exercise in gaining familiarity with the inference rules, we illustrate how
they can be used to simulate Buchberger’s algorithm in Figure 4.

3 Algebraic Notions of Proof Minimality

Let B = {p1, . . . , pk} be a finite subset of Q[~x]. As the considered Nullstellensatz
proofs take the form of ideal membership certificates, we first build much of the
algebraic machinery that follows in terms of general ideal membership certificates
(e.g., those of the form p ∈ I(B) for arbitrary p ∈ Q[~x]) and then later specialise the
results to the case of Nullstellensatz proofs (e.g., those of the form 1 ∈ I(B)). We
use the word “proof” to mean exclusively “Nullstellensatz proof” and “certificate” to
mean “arbitrary ideal membership certificate,” the latter of which could be a proof.

7



3.1 Algebraic Notions of Redundancy

Definition 6 (Basis redundancy). We say B is p-non-redundant iff p ∈ I(B) and
∀B ⊂ B (p /∈ I(B)). Similarly, we say B is p-redundant iff p ∈ I(B) and ∃B ⊂
B (p ∈ I(B)).

Definition 7 (Membership set). We define Mem(p, p1, . . . pk) ⊆ Q[~x]k to be the
collection of (flat) ideal membership certificates showing p ∈ I(p1, . . . , pk) as follows:

Mem(p, p1, . . . , pk) =

{

〈q1, . . . , qk〉 |
k∑

i=1

piqi = p

}

·

When no confusion can arise, we will write Mem(p, B) in place of Mem(p, p1, . . . pk).
Given α ∈ Mem(p, B), coordinate α(i) is known as the ith cofactor (of p w.r.t. B) in
α.

Definition 8 (Proof set). We define Pr(p1, . . . pk) to be the collection of (flat) Null-
stellensatz proofs of the complex unsatisfiability of {p1 ≃ 0, . . . , pk ≃ 0} 1 over Cn.
That is, Pr(p1, . . . pk) = Mem(1, p1, . . . pk). When no confusion can arise, we will
write Pr(B) in place of Pr(p1, . . . pk).

It is natural to identify the collection of hypotheses used in a certificate α ∈
Mem(p, B) with those members of B whose corresponding cofactors in α are non-
zero.

Definition 9 (Basis of hypotheses). Given α ∈ Mem(p, B), we define Hyp(B, α) to
be the collection of B-hypotheses used in α as follows:

Hyp(B, α) = {pi ∈ B | α(i) 6= 0 | 1 ≤ i ≤ k} .

Definition 10 (Non-redundant certificate). We say a membership certificate α ∈
Mem(p, B) is non-redundant iff the collection of B-hypotheses used in α,Hyp(B, α),
is p-non-redundant.

Observe that α ∈ Mem(p, B) (resp. α ∈ Pr(B)) is non-redundant iff ¬∃α′ ∈
Mem(p, B) (resp. α′ ∈ Pr(B)) s.t. Hyp(B, α′) ⊂ Hyp(B, α). Thus if α ∈ Pr(B) is
a non-redundant proof, then no strict subset of the hypotheses used in the proof is
sufficient to show the unsatisfiability of the system B over Cn. However, this is an
essentially local notion, dependent on the context of the current proof. In particular,
the non-redundancy of a proof α does not in general mean that there is no smaller
subset B ⊂ B s.t. |B| < |Hyp(B, α)| that is itself unsatisfiable over Cn. This can be
seen with the following simple example.

1The interested reader may note the connection between Pr(p1, . . . , pk) and the first syzygy
module of 〈p1, . . . , pk〉. In particular, Syz(p1, . . . , pk) = Mem(0, p1, . . . , pk) while Pr(p1, . . . , pk) =
Mem(1, p1, . . . , pk).

8



Example 2. Let the system Γ of polynomial equations be defined as follows:

Γ = {x2y2 − 1 ≃ 0, x2y ≃ 0, xy ≃ 0, x + 1 ≃ 0, y + 1 ≃ 0}.

Let B = {x2y2 − 1, x2y, xy, x + 1, y + 1} be the basis of polynomials corresponding to
Γ. Observe that Pr(B) 6= ∅. Among others, it contains the following two proofs:

α = 〈−1, y, 0, 0, 0〉 corresponding to 1 = (−1)(x2y2 − 1) + y(x2y), and

β = 〈0, 0, 1,−y, 1〉 corresponding to 1 = xy + −y(x + 1) + y + 1.

Then, we have, Hyp(B,α) = {x2y2 − 1, x2y}, Hyp(B,β) = {xy, x + 1, y + 1}.
Observe that both Hyp(B,α) and Hyp(B,β) are non-redundant and |Hyp(B,α)| <
|Hyp(B,β)| .

Thus, non-redundancy of a proof does not mean it is a proof that uses the globally
least number of hypotheses, but rather that it is in some sense locally minimal: If
one begins with a non-redundant proof and drops any used hypothesis, then no proof
of unsatisfiability for the resulting system will exist. This is made precise with the
following lemma.

Lemma 1. Let α ∈ Pr(B) be a non-redundant proof. Then, every B ⊂ Hyp(B, α) is
satisfiable over Cn.

Proof. By definition, α is non-redundant iff Hyp(B, α) is non-redundant. Thus, we
have ∀B ⊂ Hyp(B, α) (I(B) 6= Q[~x]). But, by Hilbert’s Weak Nullstellensatz, any
B ⊆ Q[~x] is unsatisfiable over Cn iff I(B) = Q[~x]. Hence every B ⊂ Hyp(B, α) is
satisfiable over Cn.

We now wish to address the following fundamental problem: Given a certificate
α ∈ Mem(p, B), can α be feasibly transformed into a non-redundant certificate? With
feasibility in mind, we look only for transformations which arise by a combination of
(i) dropping used hypotheses and (ii) modifying non-zero cofactors. In particular, all
transformations α 7→ α′ are s.t. Hyp(B, α′) ⊂ Hyp(B, α). In devising such techniques,
one needs to refer to individual hypotheses contributing to the redundancy.

Definition 11. Given a certificate α ∈ Mem(p, B) and a j s.t. 1 ≤ j ≤ k, we say α
is j-redundant iff α(j) 6= 0 and Mem(p,Hyp(B, α) \ {pj}) 6= ∅.

3.2 Redundancy in the Linear Case

Before discussing the elimination of redundancy in the general non-linear setting, it
is instructive to examine the linear case. If B is a system of linear polynomials, then
the calculation of a Gröbner basis for B degenerates into Gaussian elimination. By
adopting the strategy of eager simplification, one can guarantee that for every proof
α ∈ Mem(p, B), α is not j-redundant.

9



Theorem 5. If G is a fair Gröbner basis procedure implementing eager simplification,
p ∈ I(B), p and B are linear, then forall α ∈ Mem(p, B), α is non-redundant.

Proof. Assume α ∈ Mem(p, B) is redundant. Then, there must exist some strict
subset B ⊂ B s.t. p ∈ I(B). Moreover, we have two corresponding certificates α,α′ ∈
Mem(p, B) s.t. Hyp(B, α′) ⊂ Hyp(B, α). In particular, α(i) = 0 =⇒ α′(i) = 0. Let
X = {j1, . . . , jm} be the collection of indices s.t.(α′(ji) − α(ji)) 6= 0. That is, X is
the collection of indices for which α and α′ differ. Note that X cannot be empty, as
Hyp(B, α′) ⊂ Hyp(B, α). Now, G must have processed the members of B in some
order. WLOG, assume that pji

was processed before pji+1
when ji, ji+1 ∈ X. Then,

we have:

p =

k∑

i=1

α(i)pi =

k∑

i=1

α′(i)pi.

Therefore,

0 =

k∑

i=1

(α(i) − α′(i))pi =

jm∑

i=j1

(α(i) − α′(i))pi

and so,

(α′(jm) − α(jm))pjm =

jm−1∑

i=j1

(α(i) − α′(i))pi,

and so pjm =

jm−1∑

i=j1

α(i) − α′(i)

α′(jm) − α(jm)
pi.

Hence pjm ∈ I(p1, . . . , pjm−1
). Thus, eager simplification would have reduced α(jm)

to 0, so α(jm) = 0. But recall that α(i) = 0 =⇒ α′(i) = 0. Hence α′(jm) = 0. But
then jm 6∈ X. Contradiction.

Thus the simple process of excluding all pi s.t. α(i) = 0 from contributing to
a certificate, as is done by the use of Hyp(B, α) in our definition of redundancy, is
sufficient to eliminate all redundant linear certificates when an eagerly simplifying
Gröbner basis procedure is used. If eager simplification is not used, however, this
property may fail to hold.

Example 3. Let Γ be a set of polynomial equations be defined as follows:

Γ = {x1−x2 ≃ 0, x2−x3 ≃ 0, x3−x4 ≃ 0, x2+x3−2x4 ≃ 0, x1+x2+x3−3x3+1 ≃ 0}

Let B = {x1 − x2, x2 − x3, x3 − x4, x2 + x3 − 2x4, x1 + x2 + x3 − 3x4 + 1} be the
basis of polynomials corresponding to Γ. Observe that Pr(B) 6= ∅. Among others, it
contains the following two proofs:

α = 〈−1,−1,−1,−1, 1〉, and

β = 〈−1,−2,−3, 0, 1〉.

10



The certificate α is redundant because Hyp(B,β) ⊂ Hyp(B,α). The following run
shows how certificate α can be produced by a Gröbner Basis procedure which does not
use eager simplification.

B, ∅
⊢ Orient: x1 − x2

{x2 − x3, x3 − x4, x2 + x3 − 2x4, x1 + x2 + x3 − 3x4 + 1}, {x1 − x2}
⊢ Orient: x2 − x3

{x3 − x4, x2 + x3 − 2x4, x1 + x2 + x3 − 3x4 + 1}, {x1 − x2, x2 − x3}
⊢ Orient: x3 − x4

{x2 + x3 − 2x4, x1 + x2 + x3 − 3x4 + 1}, {x1 − x2, x2 − x3, x3 − x4}
⊢ Orient: x2 + x3 − 2x4

{x1 + x2 + x3 − 3x4 + 1}, {x1 − x2, x2 − x3, x3 − x4, x2 + x3 − 2x4}
⊢ Simplify-S: x2 + x3 − 2x4 over x1 + x2 + x3 − 3x4 + 1
{x1 − x4 + 1}, {x1 − x2, x2 − x3, x3 − x4, x2 + x3 − 2x4}
⊢ Simplify-S: x1 − x2 over x1 − x4 + 1
{x2 − x4 + 1}, {x1 − x2, x2 − x3, x3 − x4, x2 + x3 − 2x4}
⊢ Simplify-S: x2 − x3 over x2 − x4 + 1
{x3 − x4 + 1}, {x1 − x2, x2 − x3, x3 − x4, x2 + x3 − 2x4}
⊢ Simplify-S: x3 − x4 over x3 − x4 + 1
{1}, {x1 − x2, x2 − x3, x3 − x4, x2 + x3 − 2x4}

3.3 Redundancy in the General Case

We now return to proof redundancy in the context of the general non-linear case.
The following concepts form the basis for our proof minimization transformations.

Definition 12. Given a certificate α ∈ Mem(p, B) and a j s.t. 1 ≤ j ≤ k, we say α
is

• j-cofactor-subsumed ⇐⇒ α(j) ∈ I(B) s.t. B ⊆ (Hyp(B, α) \ {pj}),

• j-basis-subsumed ⇐⇒ pj ∈ I(B) s.t. B ⊆ (Hyp(B, α) \ {pj}),

• j-⋆-subsumed ⇐⇒ α(j)pj ∈ I(B) s.t. B ⊆ (Hyp(B, α) \ {pj}).

We use 1j to denote 〈q1, . . . , qk〉 ∈ Q[~x]k, where qj = 1, and qi = 0 for all j 6= i.
Let α and β be in Q[~x]k, and p in Q[~x]. Then α + β denotes 〈α(1) + β(1), . . . , α(k) +
β(k)〉, and pα denotes 〈pα(1), . . . , pα(k)〉. First, we focus on cofactor-subsumption.
Note that j-cofactor-subsumption is an algebraic generalisation – using the intuition
that ideals are an algebraic generalisation of zeroness – of the fact that if a cofactor
coordinate α(j) of a certificate is explicitly 0, then its corresponding hypothesis pj

does not contribute to the certificate in an essential way. Let α ∈ Mem(p, B) and
β ∈ Mem(α(j), B) with Hyp(B, β) ⊆ Hyp(B, α)\{pj}. Then, we define the certificate
transformer

∏

j,β(α) for j-cofactor-subsumption (w.r.t. B = {p1, . . . , pk}) as α +
(−α(j))1j + pjβ.

11



Orient
S ∪ {(cm + q, α)}, G

S,G ∪ {(m + (1
c
)q, (1

c
)α)}

Superpose S,G ∪ {(

p1
︷ ︸︸ ︷

m1 + q1, α1), (

p2
︷ ︸︸ ︷

m2 + q2, α2)}

S ∪ {(spol(p1, p2),m2α1 − m1α2)}, G ∪ {(p1, α1), (p2, α2)}

Delete
S ∪ {(0, α)}, G

S,G

Simplify-S
S ∪ {(c1m1m2 + q1, α1)}, G ∪ {(m2 + q2, α2)}

S ∪ {(q1 − c1m1q2, α1 − c1m1α2}, G ∪ {(m2 + q2, α2)}

Simplify-H
S,G ∪ {(m1m2 + q1, α1), (m2 + q2, α2)}

S ∪ {(q1 − m1q2, α1 − m1α2)}, G ∪ {(m2 + q2, α2)}
if m1 6= 1

Simplify-T
S,G ∪ {(m + c1m1m2 + q1, α1), (m2 + q2, α2)}

S,G ∪ {(m − c1m1q2 + q1, α1 − c1m1α2), (m2 + q2, α2)}

Figure 5: Lifted inference rules.

Theorem 6. Let α ∈ Mem(p, B) be a j-cofactor-subsumed certificate with Hyp(B, α) =
B, and β ∈ Mem(α(j), B) with Hyp(B, β) ⊆ B \ {pj}. Then,

∏

j,β(α) ∈ Mem(p, B),
and Hyp(B,

∏

j,β(α)) ⊆ B \ {pj}.

The proof of Theorem 6 consists of straightforward algebraic manipulation. Sim-
ilarly, we define the certificate transformer

∐

j,β(α) for j-basis-subsumption (w.r.t.
B = {p1, . . . , pk}) as α+(−α(j))1j +α(j)β. Note that, in this case, β ∈ Mem(pj, B).
Finally, we reveal that j-⋆-subsumption is actually not needed. This is because Q[~x]
is an integral domain, and thus a given certificate α ∈ Mem(p, B) is j-⋆-subsumed iff
it is either j-cofactor-subsumed or j-basis-subsumed.

4 Algorithmics and SMT

We now address the problem of how to build certificates in Gröbner basis procedures
based on the inference rules in Figure 2. A certified polynomial (w.r.t. B) is a pair
(p, α) s.t. α ∈ Mem(p, B). The basic idea is lift the rules in Figure 2 to certified
polynomials. Figure 5 contains the lifted rules.

Definition 13 (Certified Procedure). A certified Gröbner basis procedure G is a
program that accepts a set of polynomials {p1, . . . , pk}, a monomial order ≺, and uses

12



the lifted versions of the rules in Figure 2 to generate a (finite or infinite) sequence
(S1 = {(p1,11), . . . , (pk,1k)}, G1 = ∅) ⊢ (S2, G2) ⊢ (S3, G3) ⊢ . . .

Note that if (1, α) ∈ Si for some i, then α is a proof for the unsatisfiability of
{p1 ≃ 0, . . . , pk ≃ 0} over Cn.

In the linear case, zero variables are used to represent certified polynomials using
a single polynomial [1, 7]. The idea is to represent the certified polynomial (p, α) as
p − α(1)z1 − . . . − α(k)zk, where zi’s are new fresh variables. The new polynomial is
still linear because α(i) is always a constant for the linear case. An approach based on
zero variables is attractive because a regular procedure can be easily used to obtain
certificates. The main idea is to make the zero variables zi smaller than the variables
{x1, . . . , xn}. This approach cannot be directly applied to the non linear case, because
it would require us to make any monomial containing a zero variable zi smaller than
a monomial not containing any zero variable. There is no monomial order with such
property, because it violates admissibility. For example, it would require z2x1 ≺ x1.

4.1 Structured Certificates

The overhead in a certified Gröbner basis procedure is substantial, since the certifi-
cates α can grow in size very quickly. Moreover, it wasteful to compute a certificate
for a polynomial that is deleted using the Delete rule. We address this issue using
structured certificates. Structured certificates are represented using the constructors
A (assumption), S (superpose), R (simplify), D (divide).

Definition 14 (Set of Polynomial Structured Certificates). The set of polynomial
structured certificates, C, is defined as the least set s.t.

Assert: p ∈ Q[~x] =⇒ A(p) ∈ C,

Superpose: ϕ1, ϕ2 ∈ C =⇒ S(ϕ1, ϕ2) ∈ C,

Simplify: ϕ1, ϕ2 ∈ C ∧ m ∈ M =⇒ R(ϕ1, ϕ2,m) ∈ C,

Divide: ϕ ∈ C =⇒ D(ϕ) ∈ C.

Figure 6 contains the lifted rules using structured certificates. The initial state
(S1, G1) for a procedure using structured certificates is:

({(p1, A(p1)), . . . , (pk, A(pk))}, ∅).

The set of hypothesis hyp(ϕ) of a structured certificate ϕ is defined as: hyp(A(p)) =
p, hyp(S(ϕ1, ϕ2)) = hyp(R(ϕ1, ϕ2,m)) = hyp(ϕ1)∪ hyp(ϕ2), and hyp(D(ϕ)) = hyp(ϕ).

Definition 15 (Polynomial of a Certificate). Given a structured certificate ϕ ∈ C,
the polynomial of ϕ, pol(ϕ), is defined as follows:

1. pol(A(p)) = p,

13



Orient
S ∪ {(cm + q, ϕ)}, G

S,G ∪ {(m + (1
c
)q,D(ϕ))}

Superpose
S,G ∪ {(p1, ϕ1), (p2, ϕ2)}

S ∪ {(spol(p1, p2),S(ϕ1, ϕ2)}, G ∪ {(p1, ϕ1), (p2, ϕ2)}

Delete
S ∪ {(0, ϕ)}, G

S,G

Simplify-S
S ∪ {(c1m1m2 + q1, ϕ1)}, G ∪ {(m2 + q2, ϕ2)}

S ∪ {(q1 − c1m1q2, R(ϕ1, ϕ2,m1m2))}, G ∪ {(m2 + q2, ϕ2)}

Simplify-H
S,G ∪ {(m1m2 + q1, ϕ1), (m2 + q2, ϕ2)}

S ∪ {(q1 − m1q2,R(ϕ1, ϕ2,m1m2))}, G ∪ {(m2 + q2, ϕ2)}
if m1 6= 1

Simplify-T
S,G ∪ {(m + c1m1m2 + q1, ϕ1), (m2 + q2, ϕ2)}

S,G ∪ {(m − c1m1q2 + q1,R(ϕ1, ϕ2,m1m2)), (m2 + q2, ϕ2)}

Figure 6: Lifted inference rules with structured certificates.

2. pol(S(ϕ1, ϕ2)) = spol(pol(ϕ1), pol(ϕ2))

3. pol(R(ϕ1, ϕ2,m) =







q1 − c1m1q2 if pol(ϕ1) contains m

where

[
pol(ϕ1) = c1m1m2 + q1, m = m1m2,
pol(ϕ2) = m2 + q2

]

,

pol(ϕ1) otherwise.

4. pol(D(ϕ)) = m + (1
c
)q, if pol(ϕ) = cm + q

Definition 16 (Flat Certificates). Given a structured certificate ϕ ∈ C, where hyp(ϕ) ⊆
B = {p1, . . . , pk}, the flat certificate with respect to B, flat(ϕ), is defined as follows:

1. flat(A(pi)) = 1i,

2. flat(S(ϕ1, ϕ2)) = m2(flat(ϕ1)) − m1(flat(ϕ2)),
where pol(ϕ1) = m1 + q1, and pol(ϕ2) = m2 + q2.

3. flat(R(ϕ1, ϕ2,m)) =







flat(ϕ1) − c1m1(flat(ϕ2)) if pol(ϕ1) contains m,

where

[
pol(ϕ1) = c1m1m2 + q1, m = m1m2,
pol(ϕ2) = m2 + q2

]

,

flat(ϕ1) otherwise.

4. flat(D(ϕ)) = 1
c
(flat(ϕ)), where pol(ϕ) = cm + q

14



Theorem 7. Given B = {p1, . . . , pk}, and a certificate ϕ ∈ C where hyp(ϕ) ⊆ B,
then flat(ϕ) ∈ Mem(pol(ϕ), B).

4.2 Restricted cofactor-subsumption and basis-subsumption

We use j-subsumption to denote j-cofactor-subsumption and j-basis-subsumption.
We now address the following issue: How to apply j-subsumption effectively in prac-
tice? In general, it is too expensive to check whether a certificate α can be j-subsumed
or not, because it requires us to answer ideal membership subqueries. That is, given
a certificate α, to check whether α can be j-subsumed, we need to compute a Gröbner
basis for Hyp(B, α) \ {pj}. We overcome this difficulty by approximating the ideal
membership subqueries. The idea is to answer these queries using a set of rewrite
rules that is not necessarily confluent.

Definition 17 (j-ϕ-Independent Polynomial). Given a certificate ϕ, a certified poly-
nomial (r, ϕ′) is j-ϕ-independent iff hyp(ϕ′) ⊆ hyp(ϕ) \ {pj}.

Let (S1, G1) ⊢ . . . ⊢ (Sm, Gm) be a run produced by a certified Gröbner basis
procedure G, (p, ϕ) be some certified polynomial in ∪m

i=0(Si∪Gi), and ∆j,ϕ be the set
of j-ϕ-independent polynomials in ∪m

i=0Gi. Now, suppose we want to check whether
α = flat(ϕ) is j-cofactor-subsumed or not. Then, we can simply check whether α(j)
rewrites to 0 using an arbitrary subset of ∆j,ϕ. For example, in our prototype, we do
not track all polynomials produced in a run. Thus, whenever a certified polynomial
(c, ϕ) (with c 6= 0) is included in Sm, we use just the j-ϕ-independent polynomials in
Gm (instead of ∪m

i=0Gi) to check whether flat(ϕ) can be j-cofactor-subsumed or not.

Example 4. Let S be a set of polynomials {p1, p2, p3, p4}, where:

p1 = x1 − x2, p2 = x1x
2
3 − x1x

2
4 + 1, p3 = x5x4 − x3, p4 = x5x3 − x4

The set {p1 ≃ 0, p2 ≃ 0, p3 ≃ 0, p4 ≃ 0} is unsatisfiable over C5. Let G be a correct
Gröbner basis procedure that produces the run (S1 = S,G1 = ∅) ⊢ . . . ⊢ (Sm, Gm),
where Sm contains the certified polynomial (1, ϕ), where:

ϕ = R(S(p3, p4),R(A(p1),R(A(p1),A(p2), x
2
3), x

2
4), x2)

The flat certificate flat(ϕ) associated with ϕ is:

flat(ϕ) = 〈(−x2
3 + x2

4), 1, x2x3, − x2x4〉.

Assume also that some Gi in the run contains the certified polynomial (r, ϕ′) = (x3 −
x4, S(A(p3),A(p4))). Note that (r, ϕ′) is 1-ϕ-independent, and −x2

3 +x2
4 7→r 0. Thus,

flat(ϕ) can be 1-cofactor-subsumed.

15



5 Conclusion

The effectiveness of an SMT solver depends crucially upon the ability of its T -solvers
to identify “small” inconsistent set of formulas. Hence, we defined algebraic notions of
proof minimality and redundancy for Hilbert’s Weak Nullstellensatz, and two useful
certificate transformations: cofactor-subsumption and basis-subsumption. We also
described how certificates can be extracted in the framework of abstract Gröbner
Basis.

References

[1] G. B. Alan and A. Borning. The cassowary linear arithmetic constraint solving
algorithm. ACM Transactions on Computer Human Interaction, 1998.

[2] L. de Moura, H. Rueß, and N. Shankar. Justifying equality. In PDPAR’04, 2004.

[3] R. Nieuwenhuis and A. Oliveras. Fast Congruence Closure and Extensions. Inf.
Comput., 2005(4), 2007.

[4] G. O. Passmore and L. de Moura. Superfluous s-polynomials in strategy-
independent gröbner bases. to appear.

[5] G. O. Passmore and P. B. Jackson. Combined decision techniques for the exis-
tential theory of the reals. In Calculemus’09, 2009.

[6] A. Platzer, J. Quesel, and P. Rümmer. Real world verification. In CADE-22,
2009.

[7] H. Rueß and N. Shankar. Solving linear arithmetic constraints. Technical Report
SRI-CSL-04-01, SRI International, 2004.

[8] A. Tarski. A decision method for elementary algebra and geometry. Technical
report, 2nd edn. University of California Press, Berkeley, 1951.

[9] A. Tiwari. An algebraic approach for the unsatisfiability of nonlinear constraints.
In CSL’05, volume 3634 of LNCS, 2005.

16


